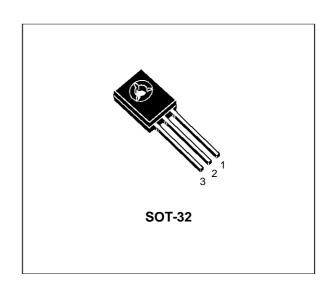


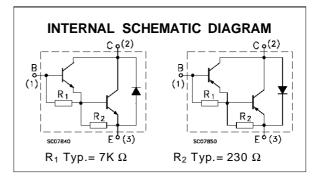
BD677/A/679/A/681 BD678/A/680/A/682

COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTORS

- SGS-THOMSON PREFERRED SALESTYPES
- COMPLEMENTARY PNP NPN DEVICES
- MONOLITHIC DARLINGTON CONFIGURATION
- INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE

APPLICATION


 LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT


DESCRIPTION

The BD677, BD677A, BD679, BD679A and BD681 are silicon epitaxial-base NPN power transistors in monolithic Darlington configuration mounted in Jedec SOT-32 plastic package.

They are intended for use in medium power linar and switching applications

The complementary PNP types are BD678, BD678A, BD680, BD680A and BD682 respectively.

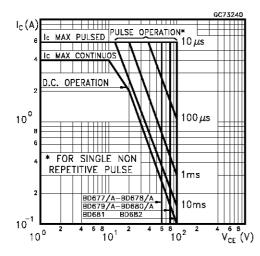
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value			Unit
	NPN		BD677/A	BD679/A	BD681	
		PNP	BD678/A	BD680/A	BD682	
V _{CBO}	Collector-Base Voltage (I _E = 0)		60	80	100	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)		60	80	100	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)		5			V
Ic	Collector Current		4			Α
I _{CM}	Collector Peak Current		6			Α
I _B	Base Current		0.1			Α
Ptot	Total Dissipation at T _c ≤ 25 °C		40			W
T _{stg}	Storage Temperature		-65 to 150			°C
Tj	Max. Operating Junction Temperature		150			°C

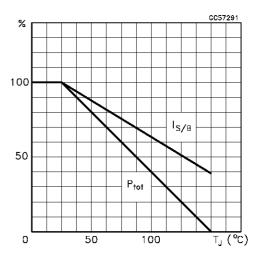
For PNP types voltage and current values are negative.

September 1997 1/6

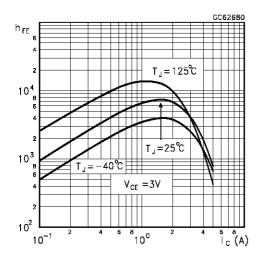
THERMAL DATA

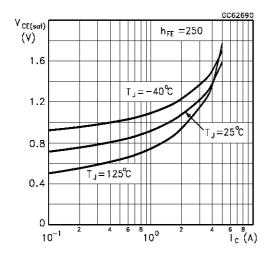

R _{thj-case}	Thermal Resistance Junction-case	Max	3.12	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	100	°C/W

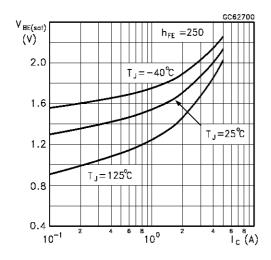
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

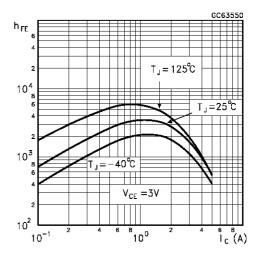

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ісво	Collector Cut-off Current (I _E = 0)	V_{CE} = rated V_{CBO} V_{CE} = rated V_{CBO} T_{C} = 100 °C			0.2 2	mA mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = half rated V _{CEO}			0.5	mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			2	mA
VCEO(sus)*	Collector-Emitter Sustaining Voltage	I _C = 50 mA for BD677/677A/678/678A for BD679/679A/680/680A for BD681/682	60 80 100			V V V
VCE(sat)*	Collector-Emitter Saturation Voltage	for BD677/678/679/680/681/682 $I_C = 1.5 \text{ A}$ $I_B = 30 \text{ mA}$ for BD677A/678A/679A/680A $I_C = 2 \text{ A}$ $I_B = 40 \text{ mA}$			2.5 2.8	< <
V _{BE} *	Base-Emitter Voltage	for BD677/678/679/680/681/682 I _C = 1.5 A V _{CE} = 3 V for BD677A/678A/679A/680A I _C = 2 A V _{CE} = 3 V			2.5 2.5	V V
h _{FE} *	DC Current Gain	for BD677/678/679/680/681/682 I _C = 1.5 A V _{CE} = 3 V for BD677A/678A/679A/680A I _C = 2 A V _{CE} = 3 V	750 750			
h _{fe}	Small Signal Current Gain	I _C = 1.5 A V _{CE} = 3 V f = 1MHz	1			

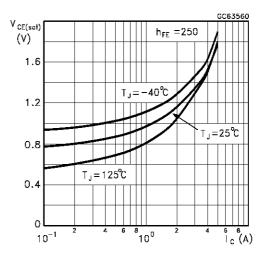
^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

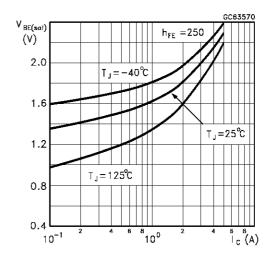

Safe Operating Areas

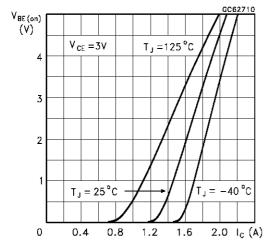

Derating Curve

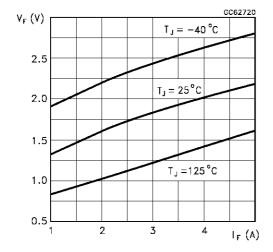

DC Current Gain (NPN type)

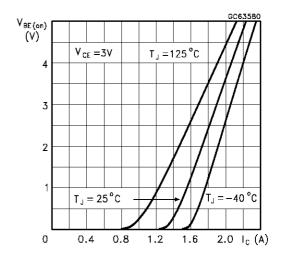

Collector-Emitter Saturation Voltage (NPN type)

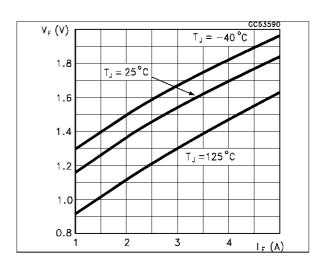

Base-Emitter Saturation Voltage (NPN type)


DC Current Gain (PNP type)

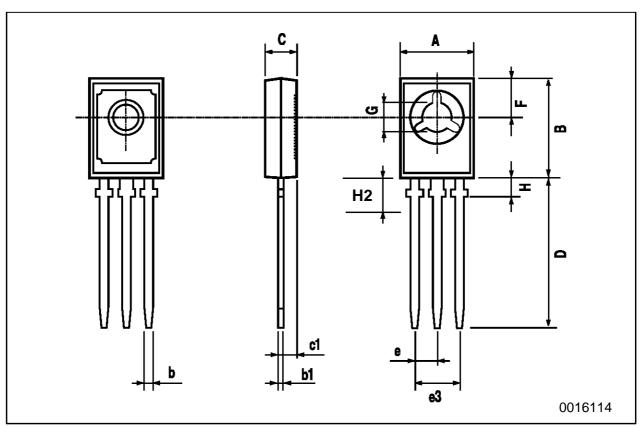

Collector-Emitter Saturation Voltage (PNP type)


Base-Emitter Saturation Voltage (PNP type)


Base-Emitter On Voltage (NPN type)


Freewheel Diode Forward Voltage (NPN types)

Base-Emitter On Voltage (PNP type)



Freewheel Diode Forward Voltage (PNP types)

SOT-32 (TO-126) MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	7.4		7.8	0.291		0.307
В	10.5		10.8	0.413		0.445
b	0.7		0.9	0.028		0.035
b1	0.49		0.75	0.019		0.030
С	2.4		2.7	0.040		0.106
c1	1.0		1.3	0.039		0.050
D	15.4		16.0	0.606		0.629
е		2.2			0.087	
e3	4.15		4.65	0.163		0.183
F		3.8			0.150	
G	3		3.2	0.118		0.126
Н			2.54			0.100
H2		2.15			0.084	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\ensuremath{\texttt{@}}$ 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

BD676, BD676A, BD678, BD678A, BD680, BD680A, BD682

Plastic Medium-Power Silicon PNP Darlingtons

This series of plastic, medium-power silicon PNP Darlington transistors can be used as output devices in complementary general-purpose amplifier applications.

Features

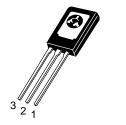
- Pb-Free Package is Available*
- High DC Current Gain –
 h_{FE} = 750 (Min) @ I_C = 1.5 and 2.0 Adc
- Monolithic Construction
- BD676, 676A, 678, 678A, 680, 680A, 682 are complementary with BD675, 675A, 677, 677A, 679, 679A, 681
- BD678, 678A, 680, 680A are equivalent to MJE 700, 701, 702, 703

MAXIMUM RATINGS

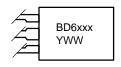
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}		Vdc
BD676, BD676A	020	45	
BD678, BD678A		60	
BD680, BD680A		80	
BD682		100	
Collector-Base Voltage	V _{CB}		Vdc
BD676, BD676A		45	
BD678, BD678A		60	
BD680, BD680A		80	
BD682		100	
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current	Ic	4.0	Adc
Base Current	Ι _Β	0.1	Adc
Total Device Dissipation	P_{D}		
@ T _C = 25°C		40	W
Derate above 25°C		0.32	W/°C
Operating and Storage Junction	T _J , T _{stg}	-55 to	°C
Temperature Range		+150	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction–to–Case	$R_{\theta JC}$	3.13	°C/W

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


http://onsemi.com

4.0 A DARLINGTON
POWER TRANSISTORS
PNP SILICON
45, 60, 80, 100 V, 40 W

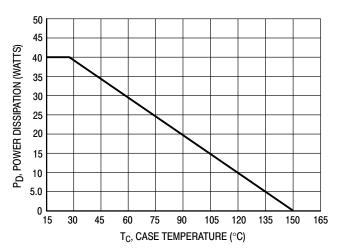
TO-225AA CASE 77 STYLE 1

MARKING DIAGRAM

xxx = 76, 76A, 78, 78A, 80, 80A or 82

Y = Year WW = Work Week

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

BD676, BD676A, BD678, BD678A, BD680, BD680A, BD682

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (Note 1) $(I_C = 50 \text{ mAdc}, I_B = 0)$	BD676, 676A BD678, 678A BD680, 680A BD682	BV _{CEO}	45 60 80 100	- - - -	Vdc
Collector Cutoff Current (V _{CE} = Half Rated V _{CEO} , I _B = 0)		I _{CEO}	-	500	μAdc
Collector Cutoff Current $(V_{CB} = Rated BV_{CEO}, I_E = 0)$ $(V_{CB} = Rated BV_{CEO}, I_E = 0, T_C = 100^{\circ}C)$		I _{CBO}	- -	0.2 2.0	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (Note 1) ($I_C = 1.5 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$) ($I_C = 2.0 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$)	BD676, 678, 680, 682 BD676A, 678A, 680A	h _{FE}	750 750	_ _	
Collector–Emitter Saturation Voltage (Note 1) ($I_C = 1.5 \text{ Adc}$, $I_B = 30 \text{ mAdc}$) ($I_C = 2.0 \text{ Adc}$, $I_B = 40 \text{ mAdc}$)	BD678, 680, 682 BD676A, 678A, 680A	V _{CE(sat)}	- -	2.5 2.8	Vdc
Base–Emitter On Voltage (Note 1) ($I_C = 1.5 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$) ($I_C = 2.0 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$)	BD678, 680, 682 BD676A, 678A, 680A	V _{BE(on)}	- -	2.5 2.5	Vdc
DYNAMIC CHARACTERISTICS					
Small–Signal Current Gain (I _C = 1.5 Adc, V _{CE} = 3.0 Vdc, f =	: 1.0 MHz)	h _{fe}	1.0	_	_

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Figure 1. Power Temperature Derating

BD676, BD676A, BD678, BD678A, BD680, BD680A, BD682

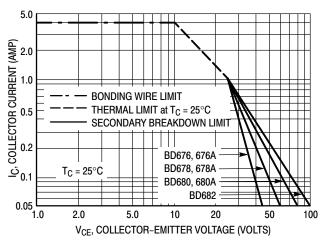


Figure 2. DC Safe Operating Area

There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

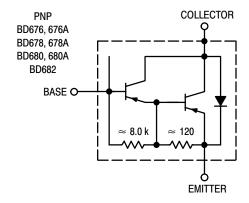
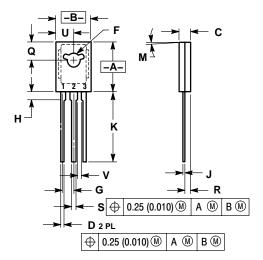


Figure 3. Darlington Circuit Schematic

ORDERING INFORMATION


Device	Package	Shipping [†]
BD676	TO-225AA	
BD676G	TO-225AA (Pb-Free)	500 Units / Box
BD676A	TO-225AA	500 Units / Box
BD678	TO-225AA	500 Units / Box
BD678A	TO-225AA	500 Offits / Box
BD680	TO-225AA	500 Units / Box
BD680A	TO-225AA	500 Offits / Box
BD682	TO-225AA	
BD682G	TO-225AA (Pb-Free)	500 Units / Box
BD682T	TO-225AA	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BD676, BD676A, BD678, BD678A, BD680, BD680A, BD682

PACKAGE DIMENSIONS

TO-225AA CASE 77-09 ISSUE Z

- DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.
- 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.425	0.435	10.80	11.04
В	0.295	0.305	7.50	7.74
С	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094	BSC	2.39 BSC	
Н	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5°	TYP	5°	TYP
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
٧	0.040		1.02	

STYLE 1:

COLLECTOR BASE 3.

EMITTER 2.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.