GENERAL DESCRIPTION

The RM748 and RC748 integrated circuits are high performance, high gain monolithic operational amplifiers fabricated on a single silicon chip using the planar epitaxial process. Frequency compensation can be tailored externally to cover a broad range of analog applications.

High common-mode voltage range and absence of latch-up tendencies make the RM748 and RC748 ideal for use as a voltage follower. High gain and wide ranges of operating voltages provide superior performance in integrators, summing amplifiers and general feedback applications. Unity gain compensation is achieved by means of a single 30pF capacitor.

Both RM748 and RC748 are pin compatible with the RM709, LM101 and RM4101. The military version, RM748 operates over a temperature range from -55°C to +115°C while the commercial version RC748 operates from 0°C to +70°C.

DESIGN FEATURES

- Offset Voltage Null Capability
- Short-Circuit Protection
- No Latch-up
- Large Common-Mode and Differential Voltage Ranges
- Low Power Consumption

SCHEMATIC DIAGRAM

CONNECTION INFORMATION

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS (V_S = ±15V, T_A = 25°C unless otherwise specified)

PARAMETER	CONDITIONS	RM748			RC748			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	0
Input Offset Voltage	R _S ≤ 10kΩ		1.0	5.0		2.0	6.0	m∨
Input Offset Current			20	200		20	200	nΑ
Input Bias Current			80	500		80	500	nA
Input Resistance		0.3	2.0		0.3	2.0		МΩ
Large-Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{out} = \pm 10V$	50,000	200,000		20,000	200,000		
Output Voltage Swing	R _L ≥10kΩ	±12	±14		±12	±14		V
	R _L ≥ 2kΩ	±10	±13	1	±10	±13		V
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio	R _S ≤ 10kΩ	70	90		70	90		dB
Supply Voltage Rejection Ratio	R _S ≤ 10kΩ		30	150		30	150	μV/V
Power Consumption			50	85		50	85	mW
Transient Response (unity gain)	$V_{in} = 20 \text{mV}, R_L = 2 \text{k}\Omega,$ $C_L \leq 100 \text{pF}$							
Risetime Overshoot	(Note 4)		0.3 5.0			0.3 5.0		μs %
Slew Rate (unity gain)	$R_L \ge 2k\Omega$ (Note 4)		0.5			0.5		V/μs
The following specifications apply	for -55°C ≤ T _A ≤ +125°C fo	or RM748	3;0°C ≤	T _A ≤ +	70°C for	RC748.		
Input Offset Voltage	R _S ≤ 10kΩ			6.0			7.5	mV
Input Offset Current	+125°C,+70°C -55°C,+70°C			200 500			300 800	nA
Input Bias Current	+125°C,+70°C -55°C,+70°C						800 800	nA
Large-Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{out} = \pm 10V$	25,000			15,000			
Output Voltage Swing	R _L ≥ 10k R _L ≥ 2k	±12 ±10			±10			V
Common Mode Rejection Ratio	R _S ≤ 10kΩ	70						dB
Supply Voltage Rejection Ratio	Rs ≤ 10kΩ			150				μV/V

- 1. Rating applies for case temperatures to +125°C; derate linearly at 6.5 mW/°C for ambient temperatures above +75°C for RM748,
 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
 3. Short-circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C ambient temperature for RM748,
 4. Compensation capacitor: 30pF.

